Single trace HQC shared key recovery with SASCA Fifth NIST PQC Standardization Conference

Guillaume Goy^{1,2}

Julien Maillard ^{1,2} Philippe Gaborit¹ Antoine Loiseau²

¹XLIM, University of Limoges, France

²CEA-LETI, Grenoble Alpes University, France

10 April 2024

Table of Contents

Soft Analytical Side-Channel Attacks

2 Hamming Quasi-Cvclic

Belief Propagation against HQC (Our attacks) 3

- Breaking shuffling countermeasures
- Breaking high order masking countermeasure
- Exploiting re-encryption step
- Countermeasures 5
- 6 Conclusion and Perspectives

•00	Hamming Quasi-Cyclic	Our Attacks 00000000	Exploiting re-encryption step	Countermeasures	Conclusion 00
Table of	Contents				

1 Soft Analytical Side-Channel Attacks

- 2 Hamming Quasi-Cyclic
- 3 Belief Propagation against HQC (Our attacks)
 - Breaking shuffling countermeasures
 - Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
- 5 Countermeasures
- 6 Conclusion and Perspectives

Soft Analytical Side-Channel Attacks (SASCA)

Idea : combine several weak physical leaks to obtain strong information

- Introduced by Veyrat-Chravrillon et al. [VCGS14] to attack AES in 2014
- Application against Kyber [PPM17, PP19, HHP+21, HSST23, AEVR23]
 - $\rightarrow\,$ Information Propagation through NTT

Soft Analytical Side-Channel Attacks (SASCA)

Idea : combine several weak physical leaks to obtain strong information

- Introduced by Veyrat-Chravrillon et al. [VCGS14] to attack AES in 2014
- Application against Kyber [PPM17, PP19, HHP+21, HSST23, AEVR23] \rightarrow Information Propagation through NTT
- Attack against hash function Keccak [KPP20] in 2020
- First attack against code-based cryptography [GMGL23]

→ Mainly based on **Belief Propagation** [Mac03, KFL01].

Message passing with Belief Propagation

Hamming Quasi-Cyclic

000

The goal of Belief Propagation is to compute a **Marginal Distribution** for every **Intermediate values** involved in a given algorithm.

<u>Toy Example</u>: Galois Field Multiplication $v = a \times b$ (= $\alpha^{\log(a) + \log(b)}$) :

Our Attacks

Exploiting re-encryption step

Figure – Graphical representation of a Galois Field Multiplication

Message passing with Belief Propagation

Hamming Quasi-Cyclic

000

The goal of Belief Propagation is to compute a **Marginal Distribution** for every **Intermediate values** involved in a given algorithm.

<u>Toy Example</u>: Galois Field Multiplication $v = a \times b$ (= $\alpha^{\log(a) + \log(b)}$) :

Our Attacks

Exploiting re-encryption step

Figure – Graphical representation of a Galois Field Multiplication

The Goal is to compute : $\mathbb{P}(a \mid b, v)$, $\mathbb{P}(b \mid a, v)$, $\mathbb{P}(v \mid a, b)$

Conclusion

Message passing with Belief Propagation

Hamming Quasi-Cyclic

000

The goal of Belief Propagation is to compute a **Marginal Distribution** for every **Intermediate values** involved in a given algorithm.

<u>Toy Example</u>: Galois Field Multiplication $v = a \times b$ (= $\alpha^{\log(a) + \log(b)}$) :

Our Attacks

Exploiting re-encryption step

Figure – Graphical representation of a Galois Field Multiplication

The Goal is to compute : $\mathbb{P}(a \mid b, v)$, $\mathbb{P}(b \mid a, v)$, $\mathbb{P}(v \mid a, b)$ Sum Product Algorithm [KFL01] gives a solver for this problem. Conclusion

SASCA 000	00000	Our Attacks 00000000	Exploiting re-encryption step	Countermeasures	Conclusion 00
Table of	Contents				

2 Hamming Quasi-Cyclic

Belief Propagation against HQC (Our attacks)

- Breaking shuffling countermeasures
- Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
- 5 Countermeasures
- 6 Conclusion and Perspectives

SASCA 000	00	000		Our Attacks 00000000	Exploiting re-encryp 000	tion step	Countermeasures	Con 00	clusion
		\sim	 						

1 I I I I I I I I I I I I I I I I I I I	0	•	\sim \cdot	
Hamming	(,	uasi-		
0			- J	

Algorithm Keygen	Algorithm Encrypt	
Input : param	Input: (pk, $\mathbf{m} \in \mathbb{F}_2^\lambda)$ Output: ciphertext ct	Algorithm Decrypt
Output : (pk,sk) 1: $\mathbf{h} \stackrel{\$}{\leftarrow} \mathcal{R}$ 2: $(\mathbf{x}, \mathbf{y}) \stackrel{\$}{\leftarrow} \mathcal{R}^{2}_{\omega}$	1: $\mathbf{e} \stackrel{\$}{\leftarrow} \mathcal{R}_{\omega_e}$ 2: $(\mathbf{r}_1, \mathbf{r}_2) \stackrel{\$}{\leftarrow} \mathcal{R}^2_{\omega_r}$ 3: $\mathbf{\mu} = \mathbf{r}_1 + \mathbf{h}\mathbf{r}_2$	Input : (sk, ct) Output : m' 1: $\mathbf{c} + \mathbf{e}' = \mathbf{v} - \mathbf{u}\mathbf{y}$
3: $s = x + hy$ 4: $pk = (h, s)$ 5: $sk = (x, y)$	5: $\mathbf{u} = \mathbf{r}_1 + \mathbf{m}_2$ 4: $\mathbf{c} = \text{Encode}(\mathbf{m})$ 5: $\mathbf{v} = \mathbf{c} + \mathbf{sr}_2 + \mathbf{e}$ 6: $\mathbf{ct} = (\mathbf{u}, \mathbf{v})$	2: $\mathbf{m}' = \texttt{Decode}(\mathbf{c} + \mathbf{e}')$

Figure – Hamming Quasi-Cyclic Overview

- Decryption Failure Rate (DFR) is ensured by the error correction capability and analysis of the hamming weight distribution of the error **e**' [AGZ20]
- Most of the Side-Channel Attacks against HQC target the decoding step.

SASCA 000	00000	Our Attacks 00000000	Exploiting re-encryption step	Countermeasures 00	Conclusion
Conca	tenated code	e structure			

Figure – HQC Concatenated codes structure

Figure – HQC Concatenated codes structure

- (i) **Secret key** recovery attacks : [SHR⁺22, GLG22a, BMG⁺24]
- (ii) Shared key (message) recovery attacks : [GLG22b, GMGL23, BMG⁺24]

Algorithm Compute Syndromes from HQC RS Decoder from [AMAB⁺23]

Require: parameters : k, n the dimension and length of the code **Require:** parity check matric $H \in \mathbb{F}_q^{(n-k,n)}$ **Require:** codeword $c \in \mathbb{F}_q^{n_1}$ **Ensure:** $s := H^T \times c$ the syndrome of c1: Initialize s to 0^{n-k} 2: for i from 0 to n - k do 3: for j from 1 to n do 4: $s[i] = s[i] \oplus c[j] \times H[i, j - 1] \qquad \triangleright \times \text{ is the Galois Field multiplication}$ 5: $s[i] = s[i] \oplus c[0]$

SASCA 000	Hamming Quasi-Cyclic	•••••	Exploiting re-encryption step	Countermeasures	Conclusion
Table of	Contonto				

- 1 Soft Analytical Side-Channel Attacks
- 2 Hamming Quasi-Cyclic
- Belief Propagation against HQC (Our attacks)
 - Breaking shuffling countermeasures
 - Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
- 5 Countermeasures
- 6 Conclusion and Perspectives

Templates on the Galois field multiplication operands

00000000

Exploiting re-encryption step

Hamming Quasi-Cyclic

Templates on the Galois field multiplication operands

00000000

	Value template accuracy	Hamming weight template accuracy
Input 1	0.9389	0.5929
Input 2	0.0211	0.3035
Output	0.0221	0.5178

Table – Hamming weight and value templates accuracies on gf_mul. Each attack has been performed 400 times. 10%/90% validation/training segmentation.

Hamming Quasi-Cyclic

Figure – Graphical representation of the RS syndrome computation from HQC

SASCA 000	Hamming Quasi-Cyclic		Exploiting re-encryption step	Countermeasures	Conclusion

Re-decoding Strategy

Security level	HQ	C para	ameters	List decoder
λ	k_1	<i>n</i> 1	t	$ au_{GS}$
HQC-128	16	46	15	19
HQC-192	24	56	16	19
HQC-256	32	90	29	36

Table – Reed-Solomon error correction capability of the RS decoder for each HQC set of parameters, given for a classical decoder and the Guruswami-Sudan list decoder.

Attack Accuracy in Simulation

Figure – Simulated success rate of SASCA on the decoder, with re-decoding strategy, depending on the selected security level of HQC

SASCA Hamming Quasi-Cyclic 00000 00000 Exploiting re-encryption step Countermeasures Conclusion of C

- Fine Shuffling (Adapted from a Kyber countermeasure)
 - \rightarrow Randomly choose $a \times b$ or $b \times a$.
- Coarse shuffling (Adapted from a Kyber countermeasure)
 - ightarrow Randomly shuffle columns of the parity check matrix
- Window Shuffling (Novelty)
 - $\rightarrow\,$ Randomly shuffle lines of the parity check matrix

$$D[i, i'] = \sum_{j=1}^{256} d\left(\tilde{T}[i, j], T[i', j]\right)$$

Instance of the assignment Problem
 \rightarrow Solver : Hungarian algorithm.

Figure – High level Masking of a decoder (Codeword Masking) [MSS13]

Encoder Attack Accuracy in Simulation

Figure – Simulated success rate of SASCA on the decoder, with re-decoding strategy, depending on the selected security level of HQC

000	00000	0000000	000	00	00
Table of	Contents				

- Soft Analytical Side-Channel Attacks
- 2 Hamming Quasi-Cyclic
- 3 Belief Propagation against HQC (Our attacks)
 - Breaking shuffling countermeasures
 - Breaking high order masking countermeasure
- Exploiting re-encryption step
 - Countermeasures
- 6 Conclusion and Perspectives

 SASCA occupation
 Hamming Quasi-Cyclic
 Our Attacks occupation
 Countermeasures
 Conclusion occupation

 re-encryption
 step
 from
 HHK transform
 Countermeasures
 Conclusion

- HQC-KEM is based on HHK transform [HHK17]
- This transform introduces a re-encryption step.

re-encryption step from HHK transform

- HQC-KEM is based on HHK transform [HHK17]
- This transform introduces a re-encryption step.

Figure – HQC Structure with HHK transform

Figure – Simulated success rate of SASCA on the decoder and encoder exploiting re-encryption

σ

2

0

З

5

SASCA 000	Hamming Quasi-Cyclic	Our Attacks 00000000	Exploiting re-encryption step	•0	Conclusion 00
Table of	Contents				

- Soft Analytical Side-Channel Attacks
- 2 Hamming Quasi-Cyclic
- 3 Belief Propagation against HQC (Our attacks)
 - Breaking shuffling countermeasures
 - Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
- Countermeasures
- Conclusion and Perspectives

- The idea is to shuffle the entire matrix, instead of only rows or columns, during the matrix vector multiplication.
 - \rightarrow Even if an attacker exactly recover the shuffled matrix, there exists 2⁵⁰⁴, 2⁶¹⁴ and 2¹⁰³⁰ different permutations for the three security levels respectively.

Full Shuffling Countermeasure

- The idea is to shuffle the entire matrix, instead of only rows or columns, during the matrix vector multiplication.
 - \rightarrow Even if an attacker exactly recover the shuffled matrix, there exists 2⁵⁰⁴. 2⁶¹⁴ and 2^{1030} different permutations for the three security levels respectively.
- The encoder could be change to a classical multiplication with a generator matrix to benefit from the same countermeasure.

SASCA 000	Hamming Quasi-Cyclic	Our Attacks 00000000	Exploiting re-encryption step	Countermeasures	•0
Table of	Contents				

- 1 Soft Analytical Side-Channel Attacks
- 2 Hamming Quasi-Cyclic
- 3 Belief Propagation against HQC (Our attacks)
 - Breaking shuffling countermeasures
 - Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
 - Countermeasures

6 Conclusion and Perspectives

Conclusions

- Soft analytical side-channel attacks are a threat for (code-based) cryptography.
- Efficient countermeasure against these attacks are required.

Conclusion and Perspectives

Conclusions

- Soft analytical side-channel attacks are a threat for (code-based) cryptography.
- Efficient countermeasure against these attacks are required.

Future Works

- Target other code-based schemes with Belief Propagation Algorithms.
- Secure HQC against side-channel attacks in the *t*-probing model.

00

Conclusion and Perspectives

Conclusions

- Soft analytical side-channel attacks are a threat for (code-based) cryptography.
- Efficient countermeasure against these attacks are required.

Future Works

- Target other code-based schemes with Belief Propagation Algorithms.
- Secure HQC against side-channel attacks in the *t*-probing model.

Thank you for your attention ! Any questions ? guillaume.goy@unilim.fr

00

SASCA 000	Hamming Quasi-Cyclic	Our Attacks 00000000	Exploiting re-encryption step	Countermeasures	00	
Refere	nces I					
	Guilhèm Assael, Philippe Elbaz-Vince	nt, and Guillaume Reyr	nond.			
_	Improving single-trace attacks on the In 2023 IEEE International Symposium	number-theoretic trans m on Hardware Oriente	sform for cortex-m4. ed Security and Trust (HOST), pages 111-	-121. IEEE, 2023.		
	Nicolas Aragon, Philippe Gaborit, and Gilles Zémor.					
	arXiv preprint arXiv :2005.10741, 202	AQC encryption framew 0.	vork with a more efficient auxiliary error-c	orrecting code.		
	Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo					
	HQC reference implementation, April, https://pqc-hqc.org/implementat	2023. ion.html.				
	Richard P Brent, Pierrick Gaudry, Em	imanuel Thomé, and P	aul Zimmermann.			
_	Faster multiplication in GF(2)[x]. In Algorithmic Number Theory : 8th Springer, 2008.	International Symposiu	m, ANTS-VIII Banff, Canada, May 17-22,	2008 Proceedings 8, pages 153	3–166.	
	Chloé Baïsse, Antoine Moran, Guillau	me Goy, Julien Maillard	d, Nicolas Aragon, Philippe Gaborit, Maxi	me Lecomte, and Antoine Loise	au.	
	Secret and shared keys recovery on ha Cryptology ePrint Archive, 2024.	amming quasi-cyclic wi	th sasca.			
	Guillaume Goy, Antoine Loiseau, and	Philippe Gaborit.				

A new key recovery side-channel attack on HQC with chosen ciphertext. In International Conference on Post-Quantum Cryptography, pages 353–371. Springer, 2022.

SASCA 000	Hamming Quasi-Cyclic	Our Attacks 00000000	Exploiting re-encryption step	Countermeasures	00
Refere	nces II				
	Guillaume Goy, Antoine Loiseau, and Estimating the strength of horizontal In WCC 2022 : The Twelfth Internat Guillaume Goy, Julien Maillard, Philip Single trace HQC shared key recover Cryptology ePrint Archive, 2023. https://ia.cr/2023/1590. Dennis Hofheinz, Kathrin Hövelmann A modular analysis of the fujisaki-okk In Theory of Cryptography Conferent Mike Hamburg, Julius Hermelink, Ro van Vredendaal. Chosen ciphertext k-trace attacks on IACR Transactions on Cryptographic Julius Hermelink, Silvan Streit, Emar Adapting belief propagation to count IACR Transactions on Cryptographic Erank R Kechischang, Brendon J Ere	Phlippe Gaborit. I correlation attacks in t ional Workshop on Coo ppe Gaborit, and Antoir y with SASCA. anoto transformation. te, pages 341–371. Spri bett Primas, Simona Si masked CCA2 secure H Hardware and Embedd nuele Strieder, and Katt er shuffling of NTTS. Hardware and Embedd y and H.A. Logingr	the hamming weight leakage model : A sic ling and Cryptography, page WCC_2022_p ne Loiseau. nger, 2017. amardjiska, Thomas Schamberger, Silvan kyber. ed Systems, pages 88–113, 2021. harina Thieme.	Je-channel analysis on HQC KE Haper_48, 2022. Streit, Emanuele Strieder, and	:M. Christine
	Factor graphs and the sum-product a IEEE Transactions on information th	algorithm. eory, 47(2) :498–519, 2	001.		

SASCA 000	Hamming Quasi-Cyclic	Our Attacks 00000000	Exploiting re-encryption step	Countermeasures	00

References III

Matthias J Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks on keccak. *Cryptology ePrint Archive*, 2020.

David JC MacKay.

Information theory, inference and learning algorithms. Cambridge university press, 2003.

Dominik Merli, Frederic Stumpf, and Georg Sigl.

Protecting PUF error correction by codeword masking. *Cryptology ePrint Archive*, 2013.

Peter Pessl and Robert Primas.

More practical single-trace attacks on the number theoretic transform.

In Progress in Cryptology–LATINCRYPT 2019 : 6th International Conference on Cryptology and Information Security in Latin America, Santiago de Chile, Chile, October 2–4, 2019, Proceedings 6, pages 130–149. Springer, 2019.

Robert Primas, Peter Pessl, and Stefan Mangard.

Single-trace side-channel attacks on masked lattice-based encryption.

In Cryptographic Hardware and Embedded Systems-CHES 2017 : 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 513-533. Springer, 2017.

Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh, and Georg Sigl.

A power side-channel attack on the reed-muller reed-solomon version of the HQC cryptosystem. In International Conference on Post-Quantum Cryptography, pages 327–352. Springer, 2022.

SASCA 000	Hamming Quasi-Cyclic	Our Attacks 00000000	Exploiting re-encryption step	Countermeasures	00
References IV					

Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.

Soft analytical side-channel attacks.

In Advances in Cryptology–ASIACRYPT 2014 : 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, ROC, December 7-11, 2014. Proceedings, Part I 20, pages 282–296. Springer, 2014.