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Modern cryptography

Encryptmessage chiphertext Decrypt message

Encryption
key

Decryption
key

Alice Bob

Figure – Overview of a cryptosystem

Hybrid Cryptosystem :

� Symmetric-key cryptography : based on exhaustive key research

� Public-key cryptography : based on a hard problem

→ RSA [RSA78] - Elliptic Curves Cryptography (ECC) [Kob87, Mil85]
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Post-Quantum Cryptography (PQC) – NIST Standardization

Figure – IBM Quantum
Computer

→ Quantum Computer threat !
Shor’s and Grover’s Algorithms

Several possibilities (NIST Standards) :

� Kyber (ML-KEM - FIPS203) [BDK+18]

� Dilithium (ML-DSA - FIPS024) [DKL+18]

� Falcon (not yet published) [PFH+20]

� Sphincs+ (SLH-DSA - FIPS205) [BHK+19]

� HQC (not yet published) [AMAB+17]

Other past code-based candidates :

� BIKE [ABB+17] // ClassicMcEliece [BCL+]

And now ? ! → new round for additionnal signature schemes !
(promizing MPC-in-the-head ? !)
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Cryptographic Security

We consider three levels of security : (I) 2128, (III) 2192 and (IV) 2256

This represents the minimal number of operation requiered to recover a secret
information.
And often also The number of different secret keys.

2128 = 233︸︷︷︸
8.6 billion
Number of

human beings
on earth

× 233︸︷︷︸
8.6 GHz

CPU frequency

× 262︸︷︷︸
> 146 billion years

> 10× Age of the Universe

2256 ≈≈ 1080 ← Number of atoms in the observable universe

Number of worldwide operations for Bitcoin in a year ≈ 295.
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Side-Channel Attacks

Bob

Encryptmessage chiphertext Decrypt message

Encryption
key

Decryption
key

Alice

Physical behavior is correlated to manipulated data.
The first side-channel attack was introduced by Paul Kocher in 1996 [Koc96].
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Side-channel attacks toy example

Random Digicode : 104 combinations
Worn Digicode : 24 combinations

� Bypass the security with a physical observation
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Error Correcting Codes

Encodermessage codeword

Noisy
Communication

Channel

erroneous
codewordDecodermessage

Figure – Overview of an Error Correcting Code.

Code-based cryptography : G
$← Fk×n

2 , m
$← Fk

2 and e
$← (Fn

2)ω.
Decoding Problem :
Given (mG + e,G ), it is hard to recover m (NP-complete [BMVT78]).
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Building Code-based cryptography

(i) Mask the Code with a random permutation [McE78][ABB+17]

Encode

Encode $message
+

random
error

codeword
erroneous
codeword

Encrypt

Decode message

Figure – Masking error correcting code structure to build cryptography

(ii) Mask the message with error [AMAB+17, AMAB+20][AMAB+20]
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Hamming Quasi-Cyclic (HQC)

Alice Bob

message

 

Figure – HQC Public Key Encryption Scheme

� No Code structure masking

2 codes for HQC :

� h is a random code to protect the secret key and perform the encryption.

� C is a public and efficient code to perform decryption. Any code can be selected.
Guillaume GOY Side-Channel Attacks against HQC 11 / 52
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Hamming Quasi-Cyclic (HQC) 2

Encodemessage Add random
Error

Encrypt

Decode Reduce Error

Decrypt

message
secret key

public key

ciphertext

Figure – Hamming Quasi-Cyclic Overview
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Concatenated Code structure

� Before 2019 → Concatenated BCH and repetition codes.

� After 2019 → Concatenated Reed-Muller and Reed-Solomon codes.

Reed-
Solomon

Reed-
Muller

outer decoderinner decoder

Figure – HQC Concatenated codes structure

(i) Secret key recovery attacks : [SHR+22, GLG22a, BMG+24]

(ii) Shared key (message) recovery attacks : [GLG22b, GMGL23, BMG+24]
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Attack Scenario I

→ Chosen Ciphertext attack to recover the secret key y.

C. Decode(v− uy)

Choosing → (u, v) = (1, 0) leads to compute C. Decode(y)

Oracle

Oracle
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Attack Scenario II

Oracle

ω is known public parameter of HQC.
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Attack Scenario III

If ṽ has an Hamming weight of 1, they are two possibilities :

Oracle

Figure – Collision Case

Oracle

Figure – No-collision Case
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Divide and Conquer

� Each decoder manipulates a codeword of small Hamming weight (≤ 5 with
probability ≥ 98%)
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How to build the Oracle ?

Class i =
{
x

$← Fn2
2 , HW(x) = i

}

→ Set-Up :

� STM32F407

� Langer Near Field Probe

� Rhode-Schwarz RTO2024

� 50000 electromagnetic measurement per class.
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Leakage Assessment

For two sets S0 and S1 with cardinality n0 and n1, means µ0 and µ1 and variances σ0
and σ1.

t =
µ0 − µ1√(
σ2
0

n0
+

σ2
1

n1

) (1)

We look for absolute t-values greater than 4.5.

� If |t| ≥ 4.5, it means that they exists a statistical difference with confidence
99.9999% that may be exploit with SCA.

� Otherwise, they are no first order distinguability to exploit.
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t-test Results

(a) Cl. 0 and 1 (b) Cl. 0 and 2 (c) Cl. 0 and 3 (d) Cl. 0 and 4 (e) Cl. 0 and 5

(f) Cl. 1 and 2 (g) Cl. 1 and 3 (h) Cl. 1 and 4 (i) Cl. 1 and 5 (j) Cl.2 and 3

(k) Cl. 2 and 4 (l) Cl. 2 and 5 (m) Cl. 3 and 4 (n) Cl. 3 and 5 (o) Cl. 4 and 5

Guillaume GOY Side-Channel Attacks against HQC 21 / 52



Introduction HQC HQC Key recovery attack: Building the Oracle HQC message recovery attacks Masking HQC Conclusion

Success rate of the Oracle classification and Attack Summary

Figure – Single bit success rate recovery depending on
the number of attack traces and the number of training
traces per class.

Attack Summary :

� 50 attack traces are enough to
obtain 100% accuracy

� Reed-Muller decoding inde-
pendence

� Finally, 50 × 384 = 19200
traces are enough to target
HQC-128.
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Masking Countermeasure

Figure – d order Masking of a linear operation F

We can apply this strategy to the Reed-Muller Decoder

� Reduce the success probability from p to pd+1

� Change the distribution of the inputs.
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Decryption Failure Rate (DFR)

Reed-
Solomon

Reed-
Muller

outer decoderinner decoder

intermediate
codeword

Figure – Decryption Failure Rate of HQC

� Reed-Solomon code manipulates an error-free intermediate codeword.
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Re-decoding Strategy

codeword message

codeword'

SCA

message'

→ Side-channel errors correction with Error correcting codes structure !

Security level HQC parameters List decoder
λ k1 n1 t τGS

HQC-128 16 46 15 19

HQC-192 24 56 16 19

HQC-256 32 90 29 36

Table – More powerful decoder for Reed-Solomon codes [VG99]
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Attack Scenario – Reed-Solomon Decoder

� Target the Reed-Solomon Syndrome computation HcT to recover the codeword c.

secret
codeword

public
matrix

Guillaume GOY Side-Channel Attacks against HQC 28 / 52



Introduction HQC HQC Key recovery attack HQC message recovery attacks: Attack Description Masking HQC Conclusion

Attacker Model

In theory In practice

Access to a clone device Both training and attack on the same device
One target function only Target the Galois field multiplication
No control on the SNR No trace averaging (true single trace attack)

→ Set-Up :

� STM32F407

� Langer Probe

� Rhode-Schwarz RTO2024
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Templates on the Galois field multiplication operands

� Galois field multiplication based on FFT strategy [BGTZ08]

0 200 400 600 800 1000 1200
Sample

0.0

0.1

0.2

R
2

Operand 0
Operand 1
Output

Figure – Leakage Assesment on Galois field multiplication
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Value template accuracy Hamming weight template accuracy

Operand 0 0.9389 0.5929

Operand 1 0.0211 0.3035

Output 0.0221 0.5178

Table – Hamming weight and value templates accuracies on gf mul. Each attack has been
performed 400 times. 10%/90% validation/training segmentation.

� Use the 93.89% accuracy to build a straightforward attack !

� Suppose that a wise developper swapp the two operands (a× b = b × a)

� (we keep this swapp until the end of this presentation)

� We then exploit the 51, 78% accuracy on the Hamming weight of the output.

How to efficiently exploit this ”low accuracy” leakage ? → Belief Propagation.
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Attack Description

� Message recovery attack with a single trace !

� First used of Belief Propagation [Mac03, KFL01] against code-based
cryptography.

Idea : combine several weak physical leaks to obtain strong information

• Introduced by Veyrat-Chravrillon et al. [VCGS14] to attack AES in 2014

• Application against Kyber [PPM17, PP19, HHP+21, HSST23, AEVR23]

→ Information Propagation through NTT

• Attack against hash function Keccak [KPP20] in 2020

• First BP attack against code-based cryptography [GMGL23]

→ Allows a message recovering within a few minutes
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Belief Propagation – Overview

Figure – Graphical representation of a Multiplication

The Goal is to compute : P (a | b, v) ,P (b | a, v) ,P (v | a, b)
The Marginal Probability Distributions
Sum Product Algorithm [KFL01] gives a solver for this problem.

→ Propagate and Combine knowledge
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Reed-Solomon syndrome computation graphical representation

Cn

hn,1

sn,1

× C3

h3,1

s3,1

× C2

h2,1 h2,2 h2,3 h2,m

s2,1 s2,2 s2,3 s2,m

× × × ×

⊕ ⊕ ⊕ ⊕

C1

S1 S2 S3 Sm

Window 1

Window 2

Window n − 1

Figure – Graphical representation of the RS syndrome computation from HQC
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Belief Propagation – Properties

What is proven ?

� Proof of convergence for tree like graphes

� graph depth iterations are requiered to converge

What is not proven ?

� No proof of convergence for Cyclic graphes (oscillation phenomenon)

→ solution : Loopy Belief Propagation
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Attack Accuracy in Simulation

→ Leakage on outputs of Galois field multiplication + Run BP :
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Figure – Simulated success rate of SASCA on the decoder, with re-decoding strategy,
depending on the selected security level of HQC

� Attack works at high noise levels

� Attack strength increases with security level
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Countermeasure ? – Codeword Masking (High Level Masking) Broken !

codewordcodeword
mask

mask message

Figure – Codeword Masking [MSS13]

� Attack against the decoder which manipulates Galois field multiplications →
Inefficient countermeasure
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Encoder Attack Accuracy in Simulation
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Figure – Simulated Success rate of the attack against the decoder
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Figure – Simulated success rate of the attack against the encoder

→ Several cycles in the
Encoder graph :

� Oscillation pheno-
menons.

� Attack less accurate
at higher noise le-
vels.
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re-encryption step from HHK transform

codeword message

Decrypt

re-encrypt

messagecodeword'

Figure – HQC Structure with HHK transform

� HQC-KEM is based on HHK transform
[HHK17]

� This transform introduces a re-
encryption step.

� Enable to concatenate graphs

� First attack exploiting both encryption
and re-encryption
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Re-encryption Attack Accuracy in Simulation
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Figure – Simulated Success rate against the
decoder
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Figure – Simulated Success rate against the
encoder
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Figure – Simulated Success rate against the concatenated
decoder and encoder graph

� Concatenated graph in-
creases the strength of
the attack !

� Observation of oscilla-
tion phenomenon (en-
coder cycles)

→ Efficient shuffling coun-
termeasure to protect the
Encoder and the Decoder !
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� Concatenated graph in-
creases the strength of
the attack !

� Observation of oscilla-
tion phenomenon (en-
coder cycles)

→ Efficient shuffling coun-
termeasure to protect the
Encoder and the Decoder !
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� An adversary can choose a set of t wires in the circuit

� We simulate it by a perfect knowledge of the values carried by the chosen wires.

� A gadget is t-probing secure if the output of any t-probing adversary is
indenpedent of sensitive data.

How to build a gadget ? → We will use a low level masking.

� Boolean : a =
t⊕

i=0
ai

� Artihmetic : a =
t∑

i=0
ai mod q
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Gadget properties

� t-Non-Interference (t-NI)

→ Every set of t internal probes can be simulated with at most t shares of each
input.

� t-Strong Non-Interference (t-SNI)

→ Every set I of t1 internal probes and every set O of t2 output probes such
that t1 + t2 ≤ t, the set of probes I ∪ O can be simulated with t1 shares of
each input.

� Probe Isolating Non-Interference (PINI)

→ Introduces the notion of propagated probes.

Interferences and probes propagations can be prevented by refreshing the shares.
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Mask Refresh

Figure – Refresh algorithm

� Complexity of O(d2).

� Requiered to prevent Interferences !
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Low level masking

Figure – Low level Masking of a multiplication × with d shares
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Low level masking 2

Figure – Low level Masking of a multiplication × with d shares
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Low level masking 3

Figure – Low level Masking of a multiplication × with d shares
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Masked Reed-Solomon Encoder
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Figure – Average running time of HQC RS encoder
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Masked Reed-Solomon Decoder
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Figure – Average running time of HQC RS decoder
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HQC RS running times

Number of shares ∅ 1 2 4 8 16

HQC RS Encoder 1 1.096 2.227 4.569 9.767 20.962

HQC RS Decoder 1 15.586 41.074 135.080 520.424 2148.040

Table – Reed-Solomon Encoder and decoder running times with reference implementation as
refrence [AMAB+23]

� Cost of masking is at least a factor d , with d number of shares.

� But refresh cost O(d2).

� The structure of gadgets can dramatically lower the performance.
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Conclusions and Persecpectives

- Side-Channel Attacks represents a threat for (PQ) cryptography

- Error Correcting Codes Structure can be exploit for Side-Channel purposes

Work In Progress

- Secure HQC against side-channel attacks [ABC+22, DR24]

Future Works

- Secured PQC Schemes against SCA (Fully-masking) → MPC-in-the-head schemes
[ABB+24, MFG+23]

Thank you for your attention !
Any questions ?

guillaume.goy@unilim.fr
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Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Löıc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim

Guneysu, Carlos Aguilar Melchor, et al.
BIKE : Bit Flipping Key Encapsulation.
2017.

Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-Zamarripa, Carlo Sanna, Javier Verbel, and Floyd Zweydinger.

Mirith : Efficient post-quantum signatures from minrank in the head.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2024(2) :304–328, 2024.
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Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
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Detecting Collisions

If v has an Hamming weight of 1, they are two possibilities :

1. Supp(y) ∩ Supp(v) = Supp(v). Then HW(v− y) = HW(y)− 1, the decoder will
correct one error less than the reference decoding of y.

ORM
b (v− y) = ORM

b (y)− 1

2. Supp(y)∩ Supp(v) = ∅. Then HW(v− y) = HW(y) + 1, the decoder will correct one
error more than the reference decoding of y.

ORM
b (v− y) = ORM

b (y) + 1

� Strategy Remember locations where Oracle outputs 1 less than the reference
value.



Divide and Conquer
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Figure – Simplified HQC Concatenated RMRS Codes Framework



Breaking shuffling countermeasures

• Fine Shuffling (Adapted from a Kyber countermeasure)

→ Randomly choose a× b or b × a.

• Coarse shuffling (Adapted from a Kyber countermeasure)

→ Randomly shuffle columns of the parity check matrix
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Window 1
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Figure – Graphical representation of the RS syndrome computation from HQC



Breaking shuffling countermeasures 2

• Window Shuffling (Novelty)

→ Randomly shuffle lines of the parity check matrix

D[i , i ′] =
256∑
j=1

d
(
T̃ [i , j ],T [i ′, j ]

)
Instance of the assignment Problem.
→ Solver : Hungarian algorithm.



Full Shuffling Countermeasure

� Lines Shuffling → Not enough !

� Columns Shuffling → Not enough !

↪→ Entire Matrix Shuffling !

2504, 2614, and 21030

� We can change the encoder to apply the same countermeasure



Reed-Solomon syndrome computation graphical representation
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Figure – Graphical representation of the RS syndrome computation from HQC



Reed-Solomon Encoder graphical representation
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Figure – Graphical representation of the RS encoder from HQC
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